Symmetric operations in groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Groups and Quotient Complexity of Boolean Operations

The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L′ are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L′ are the symmetric groups Sm and Sn of degrees m and n, respectively. Denote by ◦ any...

متن کامل

Homology Operations in Symmetric Homology

Symmetric homology of a unital algebra A over a commutative ground ring k has been defined using derived functors and the symmetric bar construction of Fiedorowicz, in an analogous way as cyclic, dihedral or quaternionic homology has been defined. In this paper, it is found that the HS∗(A) admits Dyer-Lashoff homology operations, and indeed, there is a Pontryagin product structure making HS∗(A)...

متن کامل

homogenous finitary symmetric groups

we characterize strictly diagonal type of embeddings offinitary symmetric groups in terms of cardinality and the characteristic. namely, we prove thefollowing.let $kappa$ be an infinite cardinal. if$g=underset{i=1}{stackrel{infty}bigcup} g_i,$ where $ g_i=fsym(kappa n_i)$,$(h=underset{i=1}{stackrel{infty}bigcup}h_i, $ where $ h_i=alt(kappa n_i) ), $ is a group of strictly diagonal type and$xi=(...

متن کامل

Binary operations and groups

Example 1.3. The examples are almost too numerous to mention. For example, using +, we have (N,+), (Z,+), (Q,+), (R,+), (C,+), as well as vector space and matrix examples such as (Rn,+) or (Mn,m(R),+). Using subtraction, we have (Z,−), (Q,−), (R,−), (C,−), (Rn,−), (Mn,m(R),−), but not (N,−). For multiplication, we have (N, ·), (Z, ·), (Q, ·), (R, ·), (C, ·). If we define Q∗ = {a ∈ Q : a 6= 0}, ...

متن کامل

Symmetric Groups and Expanders

We construct an explicit generating sets Fn and F̃n of the alternating and the symmetric groups, which make the Cayley graphs C(Alt(n), Fn) and C(Sym(n), F̃n) a family of bounded degree expanders for all sufficiently large n. These expanders have many applications in the theory of random walks on groups and other areas of mathematics. A finite graph Γ is called an ǫ-expander for some ǫ ∈ (0, 1), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1970

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-21-2-179-186